The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 X 1 1 1 1 X X 0 X^3+X^2 0 0 0 X^2 X^3+X^2 X^2 0 0 0 0 X^2 X^3+X^2 X^2 X^3+X^2 0 0 X^2 X^2 X^3 X^2 X^3 X^2 0 X^3+X^2 X^3 0 X^3 X^2 X^2 X^3+X^2 X^3 X^3+X^2 X^2 X^3+X^2 X^3 0 X^2 X^3 X^2 0 X^2 X^3+X^2 X^3 X^3 0 X^3 X^3+X^2 0 X^3+X^2 X^3 X^3+X^2 0 X^2 X^3 0 X^3 X^3+X^2 X^3 X^2 X^3+X^2 X^3+X^2 X^2 X^2 X^3+X^2 X^3+X^2 X^3+X^2 0 0 X^3+X^2 0 X^2 X^2 X^3+X^2 0 X^2 0 0 X^3+X^2 X^2 X^3+X^2 0 0 0 X^2 X^3+X^2 X^3 0 X^2 X^3+X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 X^3 0 0 X^2 X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^3 X^3+X^2 X^3+X^2 X^3+X^2 0 X^3 X^3 X^3 X^3 X^3 X^3 X^2 X^2 X^2 0 0 0 X^3 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 0 X^3 0 0 0 X^3+X^2 X^2 0 X^3+X^2 X^2 X^2 0 X^3+X^2 0 0 X^3+X^2 X^2 0 X^3 X^3+X^2 0 X^2 X^3+X^2 X^2 0 X^3 X^3 0 X^3+X^2 X^2 X^3 X^3+X^2 X^3+X^2 0 X^2 0 X^3 X^3+X^2 0 X^3 X^3+X^2 X^2 X^3 X^2 X^3+X^2 0 X^3 X^2 X^3 X^3+X^2 X^3+X^2 0 X^3 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3 X^3 X^2 X^3 0 0 0 X^2 X^2 X^3 X^3 X^3 0 0 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 0 0 0 0 X^3 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 generates a code of length 68 over Z2[X]/(X^4) who´s minimum homogenous weight is 64. Homogenous weight enumerator: w(x)=1x^0+334x^64+1408x^68+288x^72+16x^80+1x^128 The gray image is a linear code over GF(2) with n=544, k=11 and d=256. This code was found by Heurico 1.16 in 84.5 seconds.